Title: Production of Aqueous Bromine using Electrohalogenation Systems
Learner Objectives:
Learners will be exposed to a newly developed technology that can directly produce aqueous bromine solutions through electrolytic processes.
Content/Topic Outline:
Presenter:
Andrew K. Boal, Ph.D.
Presentation Description:
While a variety of both oxidizing and non-oxidizing biocides are used to disinfect waters in cooling towers, aqueous bromine is one of the most common biocides used for this application. Since hypobromous acid is present in greater relative amounts in the high pH environment typically found in cooling towers, aqueous bromine is often considered to be a superior disinfection option relative to other oxidizing biocides, despite the increased costs associated with the use of bromine. Aqueous bromine can be introduced into a cooling tower either through the addition of sodium bromide in conjunction with sodium hypochlorite or chlorine gas or by using delivered stabilized sodium hypobromite solutions. While these options can deliver the desired aqueous bromine to the cooling tower being disinfected, they are accompanied by operational challenges such as complex injection controls, high operational costs, and the requirement of handling hazardous chemicals. Electrochlorination systems have long been used to address similar issues when treating water with aqueous chlorine by making sodium hypochlorite-based oxidant solutions on location and on demand using only salt, water, and electricity. Recently research and development has enabled the use of this same process to produce aqueous bromine solutions through the electrolysis of brines comprised of sodium chloride and sodium bromide with the addition of sulfamic acid as a bromine stabilizing agent. This paper will present the chemical and engineering aspects of this process and discuss how aqueous bromine solutions produced through electrohalogenation can be used as part of an overall cooling tower water treatment program.
Presenter Bio:
Dr. Boal obtained is Ph.D. in Organic Chemistry from the University of Massachusetts, Amherst in 2002. After graduating, Dr. Boal worked for Sandia National Laboratories and a NASA funded research center at the University of Hawaii before joining the private sector by taking a job at MIOX. While at MIOX, he took on increasing responsibilities in the development of novel water treatment chemistries based on electrolysis systems and eventually became the Chief Scientist for MIOX. Over the last several years as MIOX has evolved into a business unit of De Nora Water Technologies, Dr. Boal has taken on a more commercial-focused role and currently manages business development opportunities for electrochlorination systems in the Oil and Gas market space while continuing to support new technology development programs at DNWT.