Title: Hospitals? Hot tubs? Pseudomonas aeruginosa – What water treaters should know
Learner Objectives:
Water treaters will learn about the risks, prevalence, likely locations and tools for detecting Pseudomonas aeruginosa for effective “right-sized” water management planning and treatment.
Content/Topic Outline:
Presenter:
Jeff Bates
Presentation Description:
With Legionnaires’ disease outbreaks continuing to make headlines, the “other” opportunistic building water pathogens can be overlooked, by water management professionals and their busy customers. Yet Pseudomonas aeruginosa is a major source of expensive healthcare acquired infections, is one of the top causes of outbreaks from pools and spas and is even identified as a concern in cooling towers in some countries. Water treaters increasingly need to understand where Pseudomonas aeruginosa is most likely to be found, where it should be of significant concern (and where not!) and how to help minimize its risk of causing disease, whether that disease is likely to be fatal or simply unpleasant.
Why and where exactly is P. aeruginosa a concern? According to the CDC’s 2019 Antibiotic Resistance Threats Report, in 2017, “multidrug-resistant Pseudomonas aeruginosa caused an estimated 32,600 infections among hospitalized patients and 2,700 estimated deaths” leading to extensive healthcare expense. P. aeruginosa is particularly dangerous in neo-natal units and tragic outbreaks with multiple infant deaths occurred in 2017 and again in 2019. Water plays a major role in P. aeruginosa infections in hospitals where there are numerous “reservoirs” for the bacteria: potable water, faucets/taps, sink and shower drains, respiratory equipment, humidifiers, endoscopes, water baths, hydrotherapy pools, etc. (Bedard, 2016) Risk should be assessed, and appropriate control measures considered for each of these sites. “Swimmer’s ear” and “Hot tub rash” could be seen as mere inconveniences, but each can also lead to outbreaks, pool/spa closures and a lasting stain on the reputation of hotels and leisure facilities. Potential sources of these diseases also need to be contemplated in a water management plan. Finally, from an occupational safety perspective, P. aeruginosa can cause illness during cooling tower maintenance and cleaning (Wiatr, 2002), as well as metabolize nitrogen-based corrosion inhibitors, leading to corrosion issues. (Spies et al, prepublication manuscript.)
What do current guidance and standards documents say about P. aeruginosa? This presentation will review the Water Management Plan expectations for CMS covered hospital and long-term care facilities relative to Pseudomonas aeruginosa. The presenter will also bring attendees up to speed on the most recent work on Pseudomonas aeruginosa risk reduction being worked on by industry organizations. To provide examples of how others respond to this risk and what might be coming in the future to North America the presenter will cover regulations in other parts of the world, including the UK, France, and Germany.
What does research say about tools that can be used to detect and measure P. aeruginosa? The industry standard for detecting P. aeruginosa is by a culture method performed in a laboratory. Traditionally, culture tests have been performed on hot and cold tap water as well as on treated pools and spa water. Culture testing of biofilm samples collected by swab techniques is also common. Recently, culture methods for detecting and quantifying Pseudomonas aeruginosa have been pushed even further. This presentation will include results from a study by German researchers who have tested highly contaminated cooling tower water n the hopes of identifying more streamlined ways to meet that country’s new cooling tower pseudomonas monitoring requirements.
Presenter Bio:
Jeff Bates is the Product Manager for IDEXX Water’s Building Water Testing Solutions, which include fast, easy, and accurate tests for Legionella pneumophila and Pseudomonas aeruginosa. Since joining IDEXX Jeff has focused on the public health challenges associated with premise plumbing systems, especially in light of recent changes in building usage. Jeff has a B.A. in Environmental Studies from Middlebury College and an MBA from the Darden School of Business at the University of Virginia.