Title: History and Future - A Survey of Pilot Testing Methodologies and Results for High LSI Applications.
Learner Objectives:
The paper will assess pilot testing waters, methodologies and results from additives promoted for high LSI applications while presenting new data using state of the art equipment.
Content/Topic Outline:
- Importance of Pilot Testing in Establishing Realistic Limits of Additive Performance.
- Case Histories that Show the Criticality of Establishing Realistic Water Chemistry and System Conditions
- Presentation of New Data which Demonstrate Realistic Failure Points using State of the Art Pilot Equipment
Presenter:
Mike Standish
Presentation Description:
Independent water treatment professionals have utilized supplier data to support their integration and use of additives in their formulations and to define limits of use in field applications. While many suppliers utilize functional, bench top screening methods to compare additives, some suppliers also utilize custom built pilot test equipment. In general, pilot testing is considered to provide more realistic data that more effectively replicates field applications and defines the performance limits of the tested additive. In most cases, pilot testing does incorporate more complete and realistic water chemistry, heat transfer that more closely replicates field systems and operational parameters such as flow rate and velocity that make these evaluations much more credible and useful to the water treatment professional. In other cases, pilot data can utilize unrealistic conditions that suggest additive efficacy limits well beyond what could be pratically observed in field use applications.
The intent of this paper is to provide the membership with an overview of the importance of pilot testing in establishing an additive's performance limits, provide a survey of published data compared to industry use norms, and present new data which demonstrate realistic limits for currently used addtives in waters operating at LSI values above 2.5 and calcite saturation limits approaching 250X.
Presenter Bio:
Michael Standish is founder of Radical Polymers, LLC, a business designed to specifically develop and provide technologies to the independent water treatment community. Mike has over 32 years experience in water treatment additive design, development and evaluation. Prior to forming Radical Polymers, Mike served as Senior Business Manager for International Specialty Products and Global Business Manager for National Starch's Alco Chemical business. Mike has served on the Board of Directors of AWT and holds a BS in Chemistry and Masters in Business Administration from the University of Tennessee at Chattanooga.